个人简介 李庆余,男,广西特聘专家;安徽省技术领军人才;广西高等学校高水平创新团队带头人,卓越学者。广西师范大学二级教授,博士研究生导师;广西低碳能源材料重点实验室主任;广西新能源船舶电池工程技术研究中心主任;广西电化学能源材料与器件科技成果转化中试研究基地负责人。2000年考入中南大学,师从刘业翔院士,攻读有色金属冶金专业博士学位。2003年12月博士研究生毕业,获博士学位。The Board Committee Member of the InternationalAcademy of Electrochemical Energy Science;中国化学会电化学专业委员会委员;中国硅酸盐学会固态离子学分会理事;中国化工学会储能工程专业委员会委员;中国化学与物理电源行业协会专家委员会委员。长期从事新能源材料、新能源技术、应用电化学和有色冶金等领域的研究与开发,承担国家高技术(863)课题、国家重大基础规划项目(973)子课题、国家自然科学基金、国家自然科学基金广东省联合基金、国家自然科学基金广西区域联合基金、广西创新驱动重大专项项目、广西科学研究与技术开发计划项目、广西科学基金和横向课题等科研项目50 多项;成功研发“电池动力新能源船舶生产技术” 、“动力锂离子电池正极材料-LiFePO4生产技术”、“锂离子电池三元正极材料生产技术”、“涂层锰酸锂正极材料生产技术”、“铝塑膜软包装锂离子电池生产技术”、“方形铝壳动力锂离子电池生产技术”、“超级电容器生产技术”、“船用锂离子电池动力系统生产技术”、“铝电解用常温固化TiB2阴极涂层技术”和“铝电解碳素阳极用抗氧化涂层技术”等高新技术;在Advanced Energy Materials、Journal of Materials Chemistry、Electrochimica Acta、Journal of Power Sources、Solid State Ionics和Nonferrous Met. Soc. China等国内外知名刊物上公开发表学术论文200 多篇;获得授权国家发明专利60项;获广西技术发明一等奖1项,广西技术发明二等奖1 项。中国专利优秀奖2项,中国有色金属工业科学技术二等奖1 项。
联系方式 办公电话: 手机号码: 电子邮箱:13975808173@126.com 办公地址:广西师范大学育才校区第二理科楼112 研究方向 锂离子电池(材料、电池单体、电池系统和废旧电池的回收利用) 金属空气电池(锂空、锌空、铝空和镁空) 新能源船舶动力系统(基于锂离子电池的纯电动和混合动力系统) 新材料(石墨烯、超级电容器电极材料和铝电解电极材料等)
学历背景 起止时间 | 毕业院校 | 专业 | 学位 | 1979.09-1983.07 | 广西师范大学化学系 | 化学 | 学士 | 2000.07-2003.12 | 中南大学冶金学院 | 有色冶金 | 博士 |
工作经历 起止时间 | 工作单位 | 职务 | 1983.7- | 广西师范大学 | 教师 | 1992.3-1995.5 | 广西师范大学化学系 | 副主任 | 2004.12- | 广西师范大学 | 教授 |
讲授课程 锂离子电池工艺学(本科生) 应用化学综合实验(本科生) 复合材料(研究生) 应用化学前沿(研究生)
学术论文 Chen Z, Kang S, Peng J, et al. Capturing Oxygen-Driven Electrolyte Oxidation during High-Voltage Cycling in Li-RichLayered Oxide Cathodes[J]. ACS Energy Letters, 2022, 8: 417-419. Pan Q, Zhang M, Zhang L, et al. FeSe2@C microrods as a superior long-life and high-rate anode for sodium ion batteries[J]. ACS nano, 2020, 14(12): 17683-17692. Liang Q, Zhang L, Zhang M, et al. Three-dimensional hierarchical MoSe2/N, F co-doped carbon heterostructure assembled by ultrathin nanosheets for advanced lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 14127-14136. Tan C, Wang N, Pan Q, et al. Enhancing the Electrochemical Performance of a High‐Voltage LiNi0. 5Mn1.5O4 Cathode in a Carbonate‐Based Electrolyte with a Novel and Low‐Cost Functional Additive[J]. Chemistry–A European Journal, 2020, 26(53): 12233-12241. Liu K, Yang S, Lai F, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5):4767-4776. He C, Cai Y, Ma Z, et al. Boron and Nitrogen Co-doped Molybdenum Carbide Nanostructures for Oxygen Reduction Electrocatalysis[J]. ACS Applied Nano Materials, 2021, 4(9): 8897-8905. Tan C, Cui L, Li Y, et al. Stabilized cathode interphase for enhancing electrochemical performance of LiNi0.5Mn1.5O4-based lithium-ion battery via cis-1,2,3,6-tetrahydrophthalic anhydride[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18314-18323. Huang Y, Li Y, Tan C, et al. Modifying the Cathode–Electrolyte Interphase by Sulfone-Based Additive to Enhance the Electrochemical Performance of LiNi0.5Mn1.5O4[J]. ACS Applied Energy Materials, 2021, 5(1): 639-647. Peng J, Li Y, Chen Z, et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide[J]. ACS nano, 2021,15(7): 11607-11618. Cui L, Tan C, Li Y, et al. Hierarchical Fe2O3@MoS2/C nanorods as anode materials for sodium ion batteries with high cycle stability[J]. ACS Applied Energy Materials, 2021, 4(4): 3757-3765. Huang Y, Lv D, Zhang G, et al.Phosphorization-Introduced Defect-Rich Phosphorus-Doped Co3O4 with Propelling Adsorption–Catalysis Transformation of Polysulfide[J]. Energy & Fuels,2022, 36(6): 3339-3346. Zhao T, Wei S, Niu S, et al. Thermal Migration Promotes the Formation of Manganese and Nitrogen Doped Polyhedral Surface for Boosted Oxygen Reduction Electrocatalysis[J]. Inorganic Chemistry, 2022, 61(33)13165-13173. Wang F, Zheng F, Jiang J, et al. Microwave-assisted preparation of hierarchical N and O co-doped corn-cob-derived activated carbon for a high-performance supercapacitor[J].Energy & Fuels, 2021, 35(9): 8334-8344. Zhang H, Li Q, Wang H, et al. A review of energy management optimization based on the equivalent consumption minimization strategy for fuel cell hybrid power systems[J]. Fuel Cells, 2022, 22(4):116-130. Wang L, Chu Y, Nong Y, et al. Sr-Based Sub/Surface Integrated Layer and Bulk Doping to Enhance High-Voltage Cycling of a Ni-Rich Cathode Material[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7883-7895. He C, Cui L, Wu X, et al. Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS[J]. ACS Applied Energy Materials, 2021, 4(9): 9498-9506. Wang L, Kong D, Chen F, et al. Strongly Coupled MnO2 Nanosheets/Silver Nanoparticles Hierarchical Spheres for Efficient Oxygen Reduction Reaction Electrocatalysis[J]. Energy & Fuels, 2021, 35(20):16829-16836. Mei J, Qiu Z, Gao T, et al. Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production[J]. Langmuir, 2023. Wang H, Chu Y, Pan Q, et al. Bifunctional Surface Coating of LiAlO2/Si1–xAlxO2 Hybrid Layer on Ni-Rich Cathode Materials for High Performance Lithium-Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 8951-8961. Zhang D, Zhang Y, Huang Y, et al. Robust Oxygen Reduction Electrocatalysis Enabled by Platinum Rooted on Molybdenum Nitride Microrods[J]. Inorganic Chemistry, 2022, 61(30): 12023-12032. Yang X, Wu X, Guo Z, et al. Phosphorus/nitrogenco-doped and bimetallic MOF-derived cathode for all-solid-state rechargeablezinc–air batteries[J]. RSC advances, 2020, 10(55): 33327-33333. Li X, An M, Li P, et al. Phenylamine-Functionalized Graphene–Copper Composites with High Thermal Conductivity: Implications for Thermal Dissipation[J]. ACS Applied NanoMaterials, 2021, 4(11): 12170-12179. Li B, Yu M, Li Z, et al. Constructing Flexible All‐Solid‐State Supercapacitors from 3D Nanosheets Active Bricks via 3D Manufacturing Technology: A PerspectiveReview[J]. Advanced Functional Materials, 2022, 32(29): 2201166. Zhang X, Zhang Y, Li Q, et al. Highly efficientand durable aqueous electrocatalytic reduction of CO 2 to HCOOH with a novelbismuth–MOF: experimental and DFT studies[J]. Journal of Materials Chemistry A,2020, 8(19): 9776-9787. Wang H, Lai A, Huang D, et al. Y–F co-dopingbehavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries[J]. New Journal of Chemistry, 2021, 45(12): 5695-5703. Li Y, Tan C, Wei S, et al. Stable surface construction of the Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode material for high performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(41): 21649-21660. Wang H, Ding Y, Nong J, et al. Bifunctional NaCl template for the synthesis of Si@graphitic carbon nanosheets as advanced anode materials for lithium ion batteries[J]. New Journal of Chemistry, 2020, 44(33): 14278-14285. Peng J M, Chen Z Q, Li Y, et al. Conducting network interface modulated rate performance in LiFePO 4/C cathodematerials[J]. Rare Metals, 2022: 1-9. Li Q, Zhang M, Nong Y, et al. Synthesis ofcore–shell ZnS@ C microrods as advanced anode materials for lithium-ionbatteries[J]. New Journal of Chemistry, 2022, 46(37): 18069-18075. Yan Z, Huang D, Fan X, et al. Fluorine-dopedcarbon coated LiFePO3.938F0.062 composites as cathode materials for high-performance lithium-ion batteries[J]. Frontiers in Materials, 2020, 6: 341. Huang Y, Wang Y, Cai Y, et al. Diatomite waste derived N-doped porous carbon for applications in the oxygen reduction reaction and supercapacitors[J]. Nanoscale Advances, 2021, 3(13): 3860-3866. Pan K, Sun Y, He X, et al. Synergy ascension ofSnS/MoS2 binary metal sulfides on initial coulombic efficiency and stable capacity for lithium storage[J]. RSC advances, 2021, 11(28): 17332-17339. Wang H, Yang G, Lai F, et al. Ultrathin Al2O3 layer modified LiNi0.6Co0.2Mn0.2O2 with Al-doping for high performance lithium ion batteries[J]. Ionics, 2020, 26: 2147-2156. Wang F, Jiang Y, Zheng F, et al. High-efficiency one-step microwave method for high-performance biomass-based hierarchical porous carbon[J]. Biomass Conversion and Biorefinery, 2022: 1-11. Wang H, Zhang H, Zhang D, et al. Toward Enhanced Electrochemical Performance by Investigation of the Electrochemical Reconstruction Mechanism in Co2V2O7 Hexagonal Nanosheets for Hybrid Supercapacitors[J]. ACS Applied Materials & Interfaces, 2022, 14(6):8106-8114. Shen Y, Zhang G, Wang R, et al. Waste Lithium Ion Battery Evolves into Heteroatom Doped Carbon as Oxygen Reduction Electrocatalyst for Aqueous Al‐Air Batteries[J]. ChemPlusChem, 2022. Li Y, Li Y, Zhang L, et al. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries[J]. Journal of Energy Chemistry, 2022. Li Z, Li B, Li Q. Single‐Atom Nano‐Islands (SANIs): A Robust Atomic–Nano System for Versatile Heterogeneous Catalysis Applications[J].Advanced Materials, 2023: 2211103. Zhang X, Qiu Z, Li Q, et al. Nickel acetate-assisted graphitization of porous activated carbon at low temperature for supercapacitors with high performances[J]. Frontiers in Chemistry, 2022,10: 828381. Wang H, Li X, Peng J, et al. Control of the interface graphitized/amorphous carbon of biomass-derived carbon microspheres for symmetric supercapacitors[J]. Nanoscale Advances, 2021, 3(16): 4858-4865. He C, Zhang D, Cai Y, et al. Robust oxygen electrocatalysis enabled by bulk nitrogen-doped hierarchical structure cobalt carbide[J]. Journal of Materials Chemistry A, 2022, 10(39): 20924-20933. Liu K, Xu Z, Han J, et al. Strategies for Improving Positive Temperature Effects in Conductive Polymer Composites-AReview[J]. Journal of Materials Chemistry C, 2023. Li X, Miu J, An M, et al. Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application[J]. New Journal of Chemistry, 2022, 46(21): 10107-10116. Li Q, Kong D, Zhao X, et al. Short-range amorphous carbon nanosheets for oxygen reduction electrocatalysis[J]. Nanoscale Advances, 2020, 2(12): 5769-5776. Li Q, Kong D, Yang G, et al. Interface-tuned Mo-based nanospheres for efficient oxygen reduction and hydrogen evolution catalysis[J]. Catalysis Science & Technology, 2020, 10(19): 6713-6722. Li Z, Li B, Yu C, et al. Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications[J]. Advanced Science, 2023: 2206605.
生产技术
动力锂离子电池正极材料-LiFePO4生产技术(专利) 涂层锰酸锂正极材料生产技术(专利) 涂层镍锰酸锂正极材料生产技术(专利) 锂离子电池生产技术(专利) 新能源船舶用锂离子电池动力系统生产技术(专利)
科研项目 动力锂离子电池正极材料-LiFePO4生产技术(专利) 涂层锰酸锂正极材料生产技术(专利) 涂层镍锰酸锂正极材料生产技术(专利) 锂离子电池生产技术(专利) 新能源船舶用锂离子电池动力系统生产技术(专利)
科研奖励 一种二维纳米金属氧化物复合涂层锰酸锂正极材料及其制备方法(专利号:201410068740.9),中国专利优秀奖,2022.07,国家知识产权局 一种含铁化合物涂层锰酸锂正极材料的制备方法(专利号:ZL201610357854.4),中国专利优秀奖,2021.06,国家知识产权局 低成本安全锰系锂离子电池和电极材料的关键技术与应用(证书号:2019-F-1-001-D01),广西技术发明奖,一等奖,广西壮族自治区人民政府 铝电解碳素阳极抗氧化涂层技术(证书号:2012-F-2-002-02),广西技术发明奖,二等奖,2012.12.30,广西壮族自治区人民政府 TiB2阴极涂层技术在160KA预焙铝电解槽上的开发与应用(证书号:中色协科字[2004]-006-2003058-R03),中国有色金属工业科学技术奖,二等奖,中国有色金属工业协会和中国有色金属学会
|